
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2007; 55:29–39
Published online 19 June 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1278

Parallel CFD fire modelling on office PCs with dynamic
load balancing

A. J. Grandison∗,†, E. R. Galea, M. K. Patel and J. Ewer

Fire Safety Engineering Group, University of Greenwich, London, U.K.

SUMMARY

Parallel processing techniques have been used in the past to provide high performance computing resources
for activities such as Computational Fluid Dynamics. This is normally achieved using specialized hardware
and software, the expense of which would be difficult to justify for many fire engineering practices. In this
paper, we demonstrate how typical office-based PCs attached to a local area network have the potential
to offer the benefits of parallel processing with minimal costs associated with the purchase of additional
hardware or software. A dynamic load balancing scheme was devised to allow the effective use of
the software on heterogeneous PC networks. This scheme ensured that the impact between the parallel
processing task and other computer users on the network was minimized thus allowing practical parallel
processing within a conventional office environment. Copyright q 2006 John Wiley & Sons, Ltd.

Received 4 January 2006; Revised 29 March 2006; Accepted 20 April 2006

KEY WORDS: CFD; fire modelling; parallel processing; PC; MPI; dynamic load balancing

INTRODUCTION

Fire simulation based on computational fluid dynamics (CFD) [1–3] has been underway for approx-
imately 25 years. Despite the growing appeal of CFD fire modelling, there are several inhibitors
which slow the wide scale adoption of the technique. While each of the specific technological
inhibitors are rather different, in the eyes of the user, they all ultimately produce the same common
problem, the costs associated with undertaking CFD-based fire simulations. These issues have
many manifestations but usually involve the difficulty associated with, and the time required to;

∗Correspondence to: A. J. Grandison, Fire Safety Engineering Group, University of Greenwich, London, U.K.
†E-mail: ga02@gre.ac.uk

Contract/grant sponsor: UK CAA

Copyright q 2006 John Wiley & Sons, Ltd.



30 A. J. GRANDISON ET AL.

set up complex geometries; the expertise level required by the engineer to correctly interpret, set
up and coax the software to a solution and to interpret the results generated (skills not normally
associated with fire engineering); and finally the computer power and time required to run the
software. Each of these factors will impact the costs associated with producing a final design
solution and hence the viability of the approach as a routine design tool. In this paper, the
excessive computational resource required to perform CFD fire simulations is addressed.

To a certain extent, the need for vast amounts of computational power is partially mitigated by
the ever improving cost-performance of desktop PCs. However, as with the provision of higher
capacity motorways (highways), providing more capacity encourages greater usage resulting in
capacity never being able to satisfy demand. In fire engineering this means that the more computing
resources are provided, the more complex or more refined will be the models produced by engineers
and hence the greater the demands placed on the performance capabilities of the computer platform.
Thus, simply relying on computer manufacturers to produce faster computers will not meet the
demands of the fire modelling community. However, parallel processing has the potential to meet
this computational demand. It should also be noted that in the future with the advent of dual-core
and multi-core processors currently being developed by Intel and AMD, software will need to be
‘parallel’ to take advantage of the additional computational power.

In the past, parallel processing techniques have successfully been applied to CFD-based fire
modelling simulations [4–6]. However, these implementations were based on expensive, special-
ized, parallel processing equipment, unlikely to be attractive to most fire engineering practices.
Modern day parallel processing is generally based around connecting commodity PC parts using
dedicated networking, e.g. Beowulf clusters [7]. In comparison, relatively little attention has been
given to harnessing the computational power of conventional MicrosoftTM WINDOWS PCs at-
tached to a local area network (LAN). Although inferior in performance to a dedicated Beowulf
style cluster, this computing resource is widely available and likely to already exist within the
offices of most engineers. Furthermore, it is likely that considerable processing power is available
within most engineering offices where desktop PCs remain idle or underutilized for large parts of
the day and evening. Using parallel computing techniques, this wasted capacity could be harnessed
to perform CFD simulations.

One example available in the literature utilizing typical PC equipment for parallel processing
was performed by Law and Turnock [8]. Their work clearly demonstrated the potential com-
putational power available from non-specialized equipment. Here the development of a parallel
version of the CFD fire simulation software SMARTFIRE [9–11] is described with particular
emphasis on testing of the dynamic load balancing (DLB) scheme operating in conventional office
conditions.

OVERVIEW OF SMARTFIRE

SMARTFIRE [12, 13] is an open architecture CFD environment written in C++ that is comprised of
four major components: the CFD numerical engine, graphical user interfaces (GUIs), an automated
meshing tool and an intelligent control system.

In fire field modelling, the fluid is governed by a set of three-dimensional partial differential
equations. This set consists of the continuity equation, the momentum equations in three space
dimensions, the energy equation, the user equations for mass and mixture fraction, and the equations
for the turbulence model, in this case the k–� model which incorporates buoyancy modification.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:29–39
DOI: 10.1002/fld



PARALLEL CFD FIRE MODELLING ON OFFICE PCs WITH DLB 31

The generalized governing equation for all variables is expressed in the following form:

���

�t
+ div(�U�) = div(��∇�) + S� (1)

where � represents the fluid variable; � and U are the local density and velocity vector; �� is the
effective exchange coefficient of �; S� represents the source term for the corresponding variable
� and time t is an independent variable.

The SMARTFIRE code will not be discussed in detail here as it has been described many
times, interested readers are referred to Reference [13] for more details. Here we will only briefly
describe the CFD engine. The CFD engine has many additional physics features that are required
for fire field modelling [1, 2]. These include models for radiation, combustion and conjugate heat
transfer through walls. For radiation, the user can select from either a six-flux radiation model [14]
or a multiple ray radiation model [15]. The software can represent the combustion process either
through a simple volumetric heat and smoke release model or a more complex gaseous combustion
model (using the eddy dissipation model) [16]. The main flow solver algorithm makes use of the
SIMPLE [17] and SIMPLEC [18] iterative solvers and can solve problems on a fully unstructured
mesh.

The CFD engine is the only component of the software that would benefit from parallelization
as the other software components are highly interactive in nature and do not require excessive
computation. Thus, the parallelization process focuses on the CFD engine of the software.

PARALLEL IMPLEMENTATION

In order to make the parallel version of the software flexible and more likely to meet the re-
quirements of fire engineers, the parallel implementation was designed to fulfil the following
criteria:

• There should be no difference between the input or output files for the serial and parallel
implementations of the software. This will allow applications to be designed and the results
visualized using the familiar serial components of the software.

• The parallel implementation should work on an arbitrary number of processors.
• Minimal additional investment (in time and hardware/software) should be required by the
fire engineer to effectively run the software.

• The software must run effectively on both homogeneous and heterogeneous networked com-
puters.

• The parallel implementation is intended to function in a Microsoft Windows environment.

An additional requirement imposed by the software developers was that there should only be one
CFD source code i.e. separate parallel and serial CFD source codes would not be developed.
Having a single CFD source code is desirable in order to minimize the effort required to maintain
the product.

The parallel code was developed by modifying the serial source code. The source code uses a
series of compiler directives and conditional statements to differentiate between serial and parallel
source code. In addition, approximately 4000 lines of new code were required. Approximately
200 lines of code were needed for the parallel communication necessary during the computational

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:29–39
DOI: 10.1002/fld



32 A. J. GRANDISON ET AL.

phase of the code. Approximately 500 lines of code were required for the renumbering, load
balancing and memory allocation processes. The rest of the amendment was primarily concerned
with the I/O process associated with the geometry file, the restart file and other output files.

In the following section, details of the selected parallelisation strategy are described. It should
however be noted that when using the parallel software, these details are hidden from the user.
These details are presented here for completeness.

Parallelization strategy

The parallel strategy used for the CFD code is based on a systematic partitioning of the prob-
lem domain onto an arbitrary number of sub-domains and is similar to the methods used by
other workers [4–6, 19, 20]. This is known as domain decomposition. Each sub-domain is com-
puted on a separate processor and runs its own copy of the CFD code. At the boundary of the
domain partitions, each sub-domain needs to communicate with its neighbouring sub-domain to
maintain the data dependencies that exist within the serial code. This communication was imple-
mented using the freely available MPI parallel library produced by Argonne National Laboratory
(MPICH) [21]. In the work presented here, a simple one-dimensional (1D) partitioning scheme
was used. More advanced partitioning schemes, such as Jostle [22] and Metis [23], have also been
implemented within parallel SMARTFIRE but will not be discussed here.

Types of parallel network

There are essentially two types of parallel network that are available within a typical engineering
office environment; homogeneous and heterogeneous networks. A homogeneous network of com-
puters is composed of a number of ‘identical’ computers, i.e. computers with the same processor
specification. Homogenous networks are commonly found in large corporate offices where the
corporate IT strategy requires that computers are purchased and upgraded on a large contract.
A heterogeneous network of computers is composed of a number of ‘non-identical’ computers
with different processor specification. Heterogeneous networks are commonly found in smaller
engineering office environments where computers are bought and upgraded depending on the re-
quirements of a particular user on an ad hoc basis. In this work, all the heterogeneous computers
used the same operating system, i.e. Microsoft WINDOWS.

Dynamic load balancing

To take advantage of a heterogeneous network of PCs, a DLB scheme was devised to determine the
relative computational power of each processor. In addition, as parallel SMARTFIRE is designed
to be used on a conventional LAN of PCs some provision for other users using the same PC
on the LAN had to be provided. This was necessary for two reasons, first the entire parallel
fire simulation would be held up if just a single computer within the network became busy with
another process, and secondly the other user’s process would be detrimentally affected by the
parallel fire simulation. To mitigate both of these effects, the software monitors the workloads
on all of its parallel computers. If a computer is found to have an additional computational load
then the problem is redistributed among the processors so that only a small amount of processing,
about 5% of the original load, is placed on the ‘busy’ processor by the parallel fire simulation.
This ensures the majority of the ‘busy’ processor processing power (about 95%) is available to the

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:29–39
DOI: 10.1002/fld



PARALLEL CFD FIRE MODELLING ON OFFICE PCs WITH DLB 33

user who is sitting in front of the computer. Furthermore, the parallel fire simulation is not held
up by the ‘busy’ processor. The DLB strategy is described below:

(1) The problem is distributed among the processors involved using an initial calculated perfor-
mance for each processor. This initial performance is calculated within the code by timing
a small number of numerical tests on each processor within the network. The workload
assigned to each processor is linearly proportional to the performance of each processor.
The performance indices are normalized so that the maximum performance index is 1.

(2) The timestep is incremented and the code is run to solve the problem for this timestep.
(3) Special operating system interrogation commands are called at the end of the timestep

from within the code to establish the %CPUtotal (the total CPU power being utilized) and
%CPUSMARTFIRE (the CPU power being expended running SMARTFIRE) usage on each
processor over the duration of the timestep. These would be both 100% if the processor
was fully utilized running SMARTFIRE.

(4) Using these figures and the initial processor performance figures �old, the new processor
performance indices are calculated using the following formula:

�new = �old

%CPUtotal
× 100 (2)

This will give a reasonable estimate of the relative CPU performances assuming that the
time to process a problem is linearly proportional to the number of cells. This is reasonable
for large cell budgets. The processor performance indices are normalized by dividing by
the maximum processor performance index.

(5) If %CPUsmartfire is less than 60% of %CPUtotal for a particular processor then it is assumed
that the processor is performing another computational task and should therefore be used
minimally for the parallel process. The performance �new is set to 0.05 for the ‘busy’
processors. This means that only a very small amount of work is placed on the processor
for the parallel task. This avoids the entire parallel job being held up by the busy processor
and leaves the vast majority of the processor capacity to work on the other job(s) running
on it.

(6) If all the new performance indices are less than 5% different from the old performance
indices, then the simulation continues using the old problem distribution. The process then
returns to step (2) until the simulation has finished.

(7) However, if any of the new performance indices are more than 5% different from the old
performance indices then a restart file is created and the problem is restarted on a new
domain decomposition by returning to step (2) and using these new processor performance
values to determine the load balance on each processor.

PERFORMANCE OF THE PARALLEL IMPLEMENTATION

In previous publications by Grandison et al. [9, 10] and Grandison [11], the performance of the
parallel implementation of SMARTFIRE on ‘well behaved’ networks was described. It was found
that good speedups could be achieved on homogeneous and heterogeneous networks of PCs, for
example a problem composed of ∼100 000 cells would run 9.3 times faster on a network of

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:29–39
DOI: 10.1002/fld



34 A. J. GRANDISON ET AL.

12 800 MHz PCs then on a single 800 MHz PC. It was also found that a network of 8 3.2 GHz
Pentium 4 PCs would run more than seven times faster than a single 3.2 GHz Pentium computer.

In the work presented below, the results of the parallel implementation operating in ‘adverse’
conditions are described. The adverse conditions occur when there is extra load on the parallel
system which could take the form of additional network traffic or additional CPU usage on one
(or more) of the processing nodes.

Fire test cases

Two test cases were used for testing the parallel implementation of SMARTFIRE on the adverse
network conditions. The nature of the test cases and the results generated by the software are not
of primary concern in this paper and so the cases will only be briefly described here. All the cases
involved fires within an enclosure that was vented to the outside and possessed an extended region
beyond the external vent to accurately capture the vent flow.

Case 1. This test case arises from a fire test conducted by the Loss Prevention Council (LPC) [24].
The test involved a burning wood crib within an enclosure with a single vent. The test compartment
had a floor area of 6 m× 4 m and a 3.3 m high ceiling. The compartment contained a doorway
(vent) measuring 1.0m× 1.8m located on the rear 6 m× 3.3m wall. The walls and ceiling of the
compartment were made of fire-resistant board (asbestos) which were 0.1 m thick. The floor was
made of concrete. The case was discretized into (31× 24× 35) 26 040 cells. Further test details
and model results can be found in Reference [25].

Case 2. This case was an artificial test case designed for timing and performance assessment. It
composed of (61× 39× 43) 102 297 cells and represented the maximum cell budget that could
be run on a serial computer with a 256Mb RAM. This case consisted of a simple fire (measuring
0.5m× 0.5m× 0.5m) located within a compartment measuring 3m× 3m plan area with a height
of 2 m. A single vent measuring 1 m× 1 m was located in one of the walls. The walls and ceiling
of the compartment were composed of a common brick material, which allows turbulent heat
transfer, and the floor was considered to be non-conducting. The fire was represented by a simple
volumetric enthalpy (heat) source with a constant heat output of 50 kW.

Fire simulation results

A detailed analysis of the fire simulation results will not be given in this paper as the intention
of this work is to demonstrate the speedup of the parallel implementation of the CFD fire model.
Detailed analysis of SMARTFIRE predictions can be found in a variety of other publications (see
for example References [25, 26]). However, it is important to note that the results generated by
the standard serial version of the software and the parallel implementation in its various network
configurations are virtually identical for all the cases examined in this paper.

The maximum difference in the two predictions was found to be less than 10−4%. This was
found to be typical of all the cases examined and is consistent with the convergence criteria (10−4)

used.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:29–39
DOI: 10.1002/fld



PARALLEL CFD FIRE MODELLING ON OFFICE PCs WITH DLB 35

Table I. Effect of network usage on parallel processing network.

Tests Case 1 Case 2

No extra network traffic 138 ± 1 s 135 ± 1 s
Test 1 138 ± 1 s 135 ± 1 s
Test 2 158 ± 3 s 156 ± 2 s
Test 3 239 ± 3 s 241 ± 4 s

Effect of network usage with no DLB

Several tests were conducted to see the effect of additional network traffic on the performance of
the parallel code. The tests were carried out on three 733MHz Pentium III computers connected to
a 100 Mbps Ethernet which were running parallel SMARTFIRE while one of the following three
tests was performed:

(1) Browsing the internet (primarily the BBC news site (news.bbc.co.uk)) on one of the
machines (<5 Mbytes).

(2) Downloading a large file from the internet onto one of the machines (∼ 50 Mbytes).
(3) Uploading a large directory structure via the intranet onto remote disk storage

(∼ 500 Mbytes).

These tests were repeated five times each for the two different cases previously described. Case
1 utilized 1 time step and 50 outer iterations, while case 1 utilized 1 time step and 20 outer
iterations. These settings were chosen to ensure that the time taken for the simulations was shorter
than the period required for downloading test 2 and uploading test 3. This ensured the maximum
detrimental network effect on the simulation runtimes.

While browsing the Internet had no measurable effect on the performance of parallel SMART-
FIRE, it can be seen from Table I that downloading a 50 Mbytes file from the Internet added
approximately 20 s to the overall runtime and uploading a directory structure via the Ethernet
added approximately 100 s to both the simulations considered. These results must be considered
in the context of a true simulation that may take several hours. The additional 100 s in this context
has minimal impact on the overall runtime and an engineer is generally unlikely to be using the
network to move around such large amounts of data. A far greater impact on the runtime will
be caused by the engineer running extra computationally intensive jobs on one or more of the
computers involved in the parallel processing.

Effect of additional computational load with no DLB

Using the same configuration that was used above one of the nodes was selected to run an additional
computational load. The additional computational load is serial SMARTFIRE running the same
case but with no interaction with the parallel case.

It can be seen from Table II that running the additional computational loads had an adverse effect
on the overall runtime of a fire model prediction. Unlike the effect of the network traffic, the effect
of the additional computational load could possibly last the duration of the parallel simulation
undertaken leading to runtimes increasing by a factor of ∼3 in this case and completely removing
the advantages of parallel processing. With more processors in the parallel network the problem

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:29–39
DOI: 10.1002/fld



36 A. J. GRANDISON ET AL.

Table II. Effect of additional computational load on
parallel processing network.

Test Case 1 Case 2

No additional load 138 ± 1 s 135 ± 1 s
Additional load 333 ± 19 s 355 ± 14 s

Table III. Results of testing of DLB with an additional serial computational load.

2 Processing nodes 3 Processing nodes

Performance index Case 1 Case 2 Case 1 Case 2

Ideal 2.0 2.0 3.0 3.0
Actual (P) 1.91 1.95 2.67 2.82
Ideal with load (P) 1.05 1.05 2.05 2.05
Actual with load (P) 0.85 ± 0.1 1.02 ± 0.02 1.61 ± 0.13 1.80 ± 0.05
Ideal with load (S) 0.95 0.95 0.95 0.95
Actual with load (S) 0.93 ± 0.01 0.92 ± 0.01 0.94 ± 0.01 0.93 ± 0.01
Combined (P + S) 1.78 ± 0.09 1.95 ± 0.01 2.56 ± 0.12 2.73 ± 0.04

is compounded as all the processors are limited by the performance of the slowest processor e.g.
if a parallel network had a speedup of 12 this could be reduced to a speedup of 4.

Testing of load balancing scheme with additional computational load

In a real office environment it is possible that one or more of the machines that an engineer chooses
to use as part of their parallel processing system may be used by other engineers or users in that
office at some point during the simulation. The parallel implementation needs to be capable to cope
with such an event. As previously described, the performance of the busy processor is reduced
to 5% of the maximum processor performance to ensure that the local user of the computer has
a large amount of processing power available to them.

Two network configurations were used to test the ability of the DLB scheme to react to an
additional serial load being placed on one of the processors. The first network configuration
was composed of two Pentium III 733 MHz processors. The second configuration was composed
of three Pentium III 733 MHz processors. Both of these configurations were connected via a
100Mbps Ethernet. The testing has been conducted on homogeneous networks to demonstrate the
load balancing scheme but does not preclude the possibility of using the DLB with an additional
load on a heterogeneous network. The parallel cases ran for a couple of time steps and then the
additional serial load would be started on one of the processors.

When one of the processors had an additional serial load placed upon it, the new speedups
for the processors were calculated using the load balancing algorithm. The performance of the
processor with the additionally serial load was reduced to 0.05. In the networks tested, this left
95% of the processing power available for the additional serial job on the additionally loaded
processor. The additional serial computational load was an instance of serial SMARTFIRE.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:29–39
DOI: 10.1002/fld



PARALLEL CFD FIRE MODELLING ON OFFICE PCs WITH DLB 37

The test results are summarized in Table III. (P) is the parallel performance and (S) is the
performance of the additional serial load, SMARTFIRE.

It can be seen from Table III that the effect of the small parallel load on the processor with
the additional serial computational load was quite small with a 6–8% loss of serial performance
compared to a processor with no parallel load. The user of the remote computer used for the
parallel processing should hardly notice the small parallel load.

The final row (Combined) of Table III gives an indication of the total amount, of computational
power extracted from the processors on the parallel network. From Table III it can be seen that
the overall processing power extracted from the network was only slightly less than the processing
performance extracted from a plain parallel load.

Intermediate changeover behaviour

The worst performance of both the serial and the parallel job occurs during the transition phase
when the additional serial job is started. The transition phase occurs before rebalancing can be
performed to take account of the additional serial load. The performance of both the parallel
job and the additional serial job will be compromised by using the wrong load balance and will
behave similarly to that obtained by running a serial and parallel case without DLB (Table II).
This results in the parallel performance being approximately 25–50% of the anticipated parallel
performance. The performance of the additional serial load is approximately 50–70% of the normal
serial performance. This problem is relatively short lived and should generally only last for a single
time step. In some circumstances it may last for two time steps.

When the additional serial job finishes then the parallel performance is slightly compromised as
only 5% of the maximum processing power of the processor, which also has the additional serial
load, is used. This is worst for two processors where only about half the total available power is
used. This problem gets progressively better as more processors are used. Theoretically for a set
of n homogeneous processors the parallel speedup is (n − 0.95). This problem is only short lived
and should generally last for a single time step. In some circumstances it may last for two time
steps. However, this effect is far less severe than the effect of starting an additional serial load as
described in the previous paragraph.

The effect of the changeover behaviour could be alleviated by checking the processor per-
formance indices more frequently and therefore allowing a problem partition rebalancing to be
performed earlier. However, this process incurs its own time penalty and may be activated pre-
maturely for short-lived additional serial loads. It is difficult to determine an optimal strategy
for choosing when to rebalance the problem partition. The strategy adopted here, i.e. checking
processor usage and if required rebalancing the computational load at the end of each time step,
seems to perform reasonably well.

CONCLUDING COMMENTS

In this paper, we have attempted to address the excessive computational resource required to perform
CFD fire simulations through the use of parallel computing techniques. However, unlike standard
approaches used in parallel computing which make use of specialist hardware and software, a main
aim of this work was to achieve an efficient parallel implementation using equipment typically found

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:29–39
DOI: 10.1002/fld



38 A. J. GRANDISON ET AL.

in an engineering office, namely standard commodity PC computers using Microsoft WINDOWS
connected using a standard LAN.

The fire simulation software SMARTFIRE was parallelized using the domain decomposition
technique and it has been previously demonstrated [9–11] that good speedups can be achieved for
a moderate number of computers (<12).

The robustness of the parallelization was demonstrated by its ability to deliver good speedups
on a heterogeneous/homogeneous network of PCs using a DLB scheme. This scheme helps ensure
that engineers utilizing an individual PC within the parallel network would not be unduly affected
by the parallel fire simulation and vice versa.

A potential difficulty in utilizing standard office PCs connected via a LAN for parallel processing
concerns the risk of individual computers failing or other users inadvertently electing to switch off
or reboot computers while they are being used for parallel processing. To address this problem a
fault-tolerant version of the parallel implementation is being developed. In the first instance this
will be based on a check pointing method which regularly saves restart data and automatically
restarts the parallel processing job by assessing which machines are ‘safe’ to operate on.

By harnessing the power of standard office-based PCs in a parallel network, CFD-based fire
modelling can be made more attractive to fire engineering practices. Tapping into under-utilized
computer power that already exists within their offices, will allow fire engineers to tackle large fire
simulations in more practical time-scales at almost no additional cost. Furthermore, this technology
could be easily applied to other CFD-based application.

ACKNOWLEDGEMENTS

Professor E. R. Galea is indebted to the UK CAA for their financial support of his personal chair in
Mathematical Modelling at the University of Greenwich.

REFERENCES

1. Galea ER. On the field modelling approach to the simulation of enclosure fires. Journal of Fire Protection
Engineering 1989; 1(1):11–22.

2. Cox G (ed.). Combustion Fundamentals of Fire. Academic Press: New York, 1995.
3. Waters RA. Stansted terminal building and early atrium studies. Journal of Fire Protection Engineering 1989;

1(1):63–76.
4. Galea ER, Ierotheou C. Fire field modelling on parallel computers. Fire Safety Journal 1992; 19(4):251–266.
5. Ierotheou C, Galea ER. A fire-field model implemented in a parallel computing environment. International

Journal for Numerical Methods in Fluids 1992; 14:175–187.
6. Galea ER, Ierotheou C. A parallel implementation of a general purpose fluid flow code and its application to

fire field modelling. In Proceedings of the Parallel Computing, Joubert, Evans, Liddel (eds). Elsevier Press:
Amsterdam, 1991, 1993.

7. Sterling T, Becker D, Savarese D et al. BEOWULF: a parallel workstation for scientific computation. Proceedings
of the 1995 International Conference on Parallel Processing (ICPP), vol. 1, August 1995; 11–14.

8. Law RA, Turnock SR. Utilising existing computational resources to create a commodity PC network suitable
for fast CFD computation. Parallel Computational Fluid Dynamics—Trends and Applications, Jensson CB (ed.).
Elsevier Science: New York, 2001; 115–122 (ISBN 0 444 50673 X).

9. Grandison AJ, Galea ER, Patel MK, Ewer J. Parallel CFD based fire modelling on conventional office based
PCs. Proceedings of the Joint DCABES and ICPACE Meeting, CMS Press: University of Greenwich, U.K., 2005;
43–46 (ISBN 1-904521-27-4).

10. Grandison AJ, Galea ER, Patel MK, Ewer J. The development of parallel implementation for a CFD based fire
field model utilising conventional office based PCs. Journal of Applied Fire Science 2003–2004; 12(2):137–157.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:29–39
DOI: 10.1002/fld



PARALLEL CFD FIRE MODELLING ON OFFICE PCs WITH DLB 39

11. Grandison AJ. Improving the regulatory acceptance and numerical performance of CFD based fire-modelling
software. Ph.D. Thesis, University of Greenwich, December 2003.

12. Ewer J, Galea ER, Patel MK, Taylor S, Knight B, Petridis M. SMARTFIRE: an intelligent CFD based fire
model. Fire Protection Engineering 1999; 10(1):13–27.

13. Ewer J, Jia F, Grandison A, Galea E, Patel M. SMARTFIRE V4.0 User Guide and Technical Manual, University
of Greenwich, 2004.

14. Hoffman N, Markatos NC. Thermal radiation effects on fires in enclosures. Applied Mathematics Modelling
1988; 12:129–140.

15. Raithby GD, Chui EH. A finite volume method for predicting a radiant heat transfer in enclosures with participating
media. Journal of Heat Transfer 1990; 112:415–423.

16. Lewis MJ, Moss MB, Rubini PA. CFD modelling of combustion and heat transfer in compartment fires. Fire
Safety Science, Proceedings of the 5th International Symposium, 1997; 463–474.

17. Patankar S. Numerical Heat Transfer and Fluid Flow. Intertext Books, McGraw-Hill: New York, 1980.
18. Van Doormal JP, Raithby GD. Enhancements of the SIMPLE method for predicting incompressible fluid flows.

Numerical Heat Transfer 1984; 7:147–163.
19. Baltas ND, Spalding DB. MIMD PHOENICS: porting a computational fluid dynamics application to a distributed

memory MIMD computer. Massively Parallel Processing Applications and Development, Dekker L et al. (eds).
Elsevier: Amsterdam, 1994.

20. McGratten K, Bouldin C. Simulating the fires in the world trade center. Proceedings Interflam 2004, Interscience,
New York, 2004; 999–1008.

21. Gropp W, Lusk E, Skjellum A. Using MPI. MIT Press: Cambridge, MA, U.S.A., 1999.
22. Walshaw C. A parallelisable algorithm for optimising unstructured mesh partitions. Technical Report P95/IM/03,

School of Computing and Mathematical Science, University of Greenwich, U.K., January 1995.
23. Karypis G, Kumar V. Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and Distributed

Computing 1998; 48(1):96–129.
24. Glocking JLD, Annable K, Campbell SC. Fire spread in multi-storey buildings—fire break out from heavyweight

unglazed curtain wall system—run 007. LPC Laboratories Report TE 88932-43, 25 February 1997.
25. Grandison AJ, Galea ER, Patel MK. Development of standards for fire field models—report on SMARTFIRE

Phase 2 simulations. FRD Publication 1/2003, Fire Research Division, ODPM (Office of the Deputy Prime
Minister), U.K., 2002.

26. Zhang J, Ewer J, Jia F, Grandison A, Galea E. SMARTFIRE v4.0: SMARTFIRE Verification and Validation
Report, University of Greenwich, U.K., 2004.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:29–39
DOI: 10.1002/fld


